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Abstract: In this paper, five-point spline collocation method is considered for solving differential-algebraic systems
with index greater than or equal one. The study shows that the purposed method applied to higher index
differential-algebraic equations is stable and the order of convergence is eight for index greater than or equals two,
while the order is nine for index-1. Numerical experiments are presented that illustrate the theoretical results. The
method is also compared with the method given by Mahmoud [7], Tabatabaei and Celik [11] and Dhamacharoen
[13] . This comparison shows that the presented method is more accurate than the previous others.

2000 AMS Subject Classifications: 65L.10; 65L05; 65L.20; 65D05
Keywords: Differential-Algebraic Equations, Spline Collocation Method, Higher Index, Stability.

1. INTRODUCTION

Differential algebraic equations (DAESs) arise in many instances when using mathematical modeling techniques for
describing phenomena in science, engineering, economics, etc. In the last three decades, the use of differential algebraic
equations has become standard modeling practice in many applications, such as constrained mechanics and chemical
process simulations. In most cases, the model is too complex to allow one to find an exact solution or even an
approximate solution by hand: an efficient, reliable computer simulation is required. It is well known that DAEs can be
difficult to solve when they have a higher index, i.e., an index greater than one (cf. [4]). Higher-index DAEs are ill posed
in a certain sense, especially when the index is greater than two [2], and a straightforward discretization generally does
not work well. Some numerical methods have been developed, using Runge—Kutta, BDF and regularization methods
[3,5,8,10]. Analytical approximate solutions of systems of differential-algebraic equations by Laplace homotopy analysis
method in [1]. Quintic C- spline collocation methods for solving initial value problems in higher index differential-
algebraic equations are presented in [7]. Tabatabaei and Celik have found the numerical solution of differential-algebraic
equations with index-3 by Pade approximation in [11].

In this paper, we study the error analysis and order of convergence of ninth spline collocation method (NSCM) applied to
solvable linear constant coefficient DAEs

Ay+By=g(x), Xe€[a,b] @)

of arbitrary index-v, where A and B are square constant matrices and g(x) is a smooth function. Moreover, the strict
stability properties of NSCM are discussed when it is applied to nonlinear systems of DAEs of the form,

FIx, y(), y®1=0, xe[a,b] )
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where the initial values of y(xg) are given and F is linear in y'.

The paper is organized as follows: In Section 2, the case of linear constant coefficient index-v systems is studied. It shows
that the 5-point spline collocation method when applied index-1 systems are stable, consistent of order nine , and
convergent of order nine. After that, we generalize the NSCM when applied to differential-algebraic systems with index
greater than one. It turns out that proposed NSCM are stable and consistent of order eight for all V > 2. In Section 3 the

NSCM are shown to be strictly stable if applied to index-v DAEs. Numerical problems are provided in Section 4 to test
the efficiency of the NSCM when applied to differential-algebraic systems.

2. DESCRIPTION NINTH SPLINE COLLOCATION METHOD

The purposed method uses five collocation points:
Xi—1+Zj =X, t Zjh =115 3)
where collocation parameters are given
O0<z,<z,<2,<z,<2,=1
Denote by X =a+ih, i=01)N, the grid points of the uniform partition of [ab] into subintervals

I =[%_,%], 1=1(1)N, and h=(b—a)/N s the constant stepsize. Ninth C’-spline functions S(x) can be
represented on each |; by

S(x) = (1-1267° + 420" —54077 +3157° —70y°)ST + (y - 70y° - 224y° ~ 2807
+160}/ - 35y )S[l] ( 27/ +1%57/ —63}/7+357/8 7/ )S[Z] (67/3_%7/5
B By e RS gt -yt 5y -Gy w3 e S+

4
(126° — 420y ° + 540y —315;/ + 70;/ *)SI 4 (—567° +1967/6 - 260y +155y° —35,°)SH +
(By° -y 453y’ -y +125°)sl 4 () + B3y Ly T _Ty%_3,%)sH
A YARS VAT YA /S a8 Nk
where X € [X,_;, %], 7 = (X=X, ;)/h e[0,1] and denotations:
Si[gl] = S(Xi—l)' Si[i]l = hS,(Xi—l)’ Si[—21] = hZS”(Xi—l)’ 5)
Si[fl] = hSSm(XH): Si[fl] = h4S(4)(Xi71)! i=1()N
From equation (4), it follows that
hS'(x) = (-630y* + 2520 ° — 3780y ° + 2520y " — 630y °)SL) + (1- 350y * +1344y°
~1960y° +1280y " ~3157°)SH + (y - 112 y* +315y° — 441y ° + 280y " - 139,°%)S7 4
(Gr* -2yt a0y ARy 432y By SH (G -5 13 -+ 30 o

~£7°)Sk +(630y* - 25207 ° + 3780y ° ~ 2520y +630y°)S + (280 * +1176y° ~1820y°
L 8\al2
+1240y " -315°)SH + (192" — 231y° + 371y° — 2607 + 133 °)S[2 4

(57t +23y° - Ly v 28y” -2 y°)SI 4 (R p* -5+ Ly0 -4y +35%)SH
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The spline approximations (4)-(6) are applied into (1) such that in each subinterval |i =[Xi_l,Xi], the following five
collocation conditions
AS’(xi_1+Zj)+BS(xi_1+zj)= g(xi_Mj) ,J=@5 , 1=1)N (7a)

hold, where initial-values:
S(Xo) = Yo, S’(Xo) = y() aS”(Xo) = yg )
SW(XO) — y(l)ﬂ ’ S(4) (X ) y(4)

The differential and algebraic parts of the system (7a) can be completely decoupled from each other [4]. Thus, it is
sufficient to study the differential and algebraic parts separately

(7b)

to get an understanding of the general linear constant-coefficient DAE.

Consider then a canonical algebraic subsystem of index-v
My"+y=g(x) ®)
where Misa vxVv matrix, g(X) = (g, (X),---,9,(X))",and y(X) = (y,(X),"--, y, (X))"
The solution to (2.5) is given by
¥, () =0,(x)
Y2 (%) =9,(X) - y1(x)

Y,00=9,00+ 2"y ()

Note that the j th component exhibits the index j behavior of the system, in the sense that y;(x) depends on the (j-1)st
derivative of the input function g(x). Applying the method to (8), we obtain
MS' (X2 ) +S(iaz ) =8 (Kinz) o J=1D)5 . T1=1DN ©)

Let S =(S,,...,S,)" .S =(S],...,S,)" , where S; denotes the derivative corresponding to the j th component of the
solution vector.

2.1-Ninth Spline Method for Indix-1 DAE:

First, we assume that the method is applied to index-1 system, then (9) reduces to a set of algebraic equations of the form
S (Xi22) = G (Xiaz) o J=1D5 . T1=1ON (19
Using the approximation (4) into (10) , i.e., taking S;=S, we have

(12627 - 4202° +5407] — 31525 +702])S[{ +(-562° +1962] - 260z +1552° -3527)SH +

(325 -T2 s02] - P2+ B2+ (2 + B2) - Y] - 525 - 2))sE
vz L2822 L2+ Lad)SIY = (1-1267] + 4202 ~5402] + 31527 - 7025)S[T,
—(z, - 702} -~ 2242} ~ 280z] +1602% ~352})S{Y, — (327 - 23 + 19525 —637] + 357 e
S1829)s18, (323575 - 207° 1577 1428 52%)sB), (L2t - 5204 B2t -5 7]
2542 —_Z )Sl[?]1+gl(xi—l+2j)! =115
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S]E(I)] = gl(xl) )
Substituting S{% = g, (), S{%, = g, (X, into (11.2), we have:

(-562; +1962; - 2602 +15525 ~3527)SH + (&L 2] ~ Ll 2§ +53z] - 8277 + 122%)S[2

i 2
23 1127 7Z ——Z )S[S] <Ji

1 1 41 _
+(z+62J 5 5 Z 6z+242)8 =

5
(242 -5
~(z, - 702 —2242,—2802.+1eoz.—3529)81[{1—(%2?—3—252 10575 —63z] + 352

i i
~LasHE -G -3 - Q28 Bz v a4z} 227, >

(1 ,4_5 5 .6
i~2%i =3 2 (2421 12+ 132

5 5 [4] 8 9
—ﬁzj +ﬂzj z )S (1—1262j +4202j —54ozj +3152; —702;)9, (X ,)

+ gl(xi_l+Zj ) - (1262j - 4207] +5402] —31527 +7023)g, (), j=1(1)5
Which are equivalent to the following recurrence formula:

A8 =B;S; i, +D; g, i=10N

where

A, =(a,).B,=(b:,) and D, =(d?,) are defined by

ay, =-562; +1962; ~260Z] +1552; ~352;, a , =41 25 - L 20 +537] - 8223 + L2 7¢
2361177 5o 1 15 16 1,7 1y8. 1
Qs =-2+ B2 =32 ~521 -3, &u =992 ~§2/+ 12§+ 212},

(11.b)

(12.9)

(12.b)

b, =-(z; —7ozj.3 ~2247° - 2807] +160Z] -352) , by, :—(%z? -$72 Jr%z‘j3 ~632] +352] —%zj’),

=-(}23-37} -2 -L77 4423 -32) by, =

dil -(1- 1262 +4zoz —54oz +3152 —7oz)

(1 54 _ 5
(222 2521+ 12 12

d e =-(1262] - 4207] +5402] —31525 +702}), d\,; =1, k=1(1)4,

1 1 1 1 1 1 1 1 1 1 1 1
d13 :d14 :d15 :dzz :d24 :dzs :d32 :d33 :dss :d42 :d43 :d44 =0,
and

_(Q@) <@ c® (4) 1) (2) (3) (4) \T
§l,i_(81|'81|’81|' ) S1|l (Slll’ 1|—1181,i—1’sl,i—1 ’

9,,= (911,91, i-1+21 910102, O,z Gy, i—l+Z4’gl,i)T'

Multiplying (12.a) by Ail,we get

~

=A §LH+A;1DIQLi Ji=1N,
where

A, =AlB,

Novelty Journals
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If 0<2z,<2,<2;<2,<1, then A, exists because

|;& |_ (1_21)4(1_22)4(1_ 23)4(1_24)4 20
11— 4 4 _4 _4 )
2, 2,2, 7,

4
Definition 1 [6]: The NSCM (13) is called stable if || (A)" || < & = const forall n >1, where & =1rpia<><42| a; |,
<i<44-

Al =(af}) . and A, is the matrix (14).
Theorem 1. The NSCM applied to index-1 systems is stable if eigenvalues of the matrix Al satisfy:
|2;1<1, j=1(1)4 (15)

Proof. Since A, has four different eigenvalues, we can easily compute the eigenvalues of the matrix A, and show in

Tablel that these values satisfy (15) for some Z,, Z,, Z,, Z,. Thus, according to the definition 1, the spline method (13)
_ 4 ~
is stable because || A," ||.< &, for n>1, is uniformly bounded where x = maXZ| a |, Al =(a). In Table2,
I<i<4 & ! H
J=

we show that k¥ — 0 as n— oo, for the method with collocation parameters
(z,=0.75,z, =0.85,2z, =0.96,2, = 0.999).

Table 1: Some stability intervals, which satisfy (2.12)

055< 7, 0.99< Z, <Z; < Z,<1
0.60< 7, 0.96< 2, <Zy<Z,<1
0.65<7, 093<Z, <Z;<Z,<1
0.70< 7, 0.90< Z, <2y <Z,<1
0.75< 7, 0.87<Z,<Zy<Z,<1
0.80< 7, 0.84<Z, <Zy<Z,<1
0.820< 7, 0.825< 2, <2y <Z,<1
z,=0.75,2, = 0.85,2, = 0.96,z, = 0.999

Table 2: The norm " A? " is uniformly bounded forall N >1
o0

n 1 2 5 10 20 n—> o0
” ,Z\f k=656.999 | k=323.887 | k=38.338 k=1.094 k=8.9083E-4 |k—0

0

Thus, the method is stable within these intervals.
To find the local error, let Y; (Xi4) = 91 (X)) .

Theorem 2. The 5-point spline collocation method is consistent and is of order nine for linear constant-coefficient index-

1 systems, for all Z,, Z,, Z, Z, shown in Tablel.
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Proof. The local discretization error of (13) at x; is defined to be

pi(X4)
hy; (%) h yl'(xi 1) Pi (Xi—1+Zl)
_ h? y1 (%) Al Yy (Xi1) Al Pi (Xi.z,) L
e B, o [T D ey |
h*y® () hy® () P (1.2,)
Pi (x;)

where
P.(X) = (1-126y° + 420y ° —540;/7 +3157° -707°)y., +(7/—7o;/5 —224y° — 280y
+1607/8—35y9)hy{_1+(l 2-2y5 4 18y° 63y +35° — By )Pyl + (373
_& 6_& 7 4 8 )hS ( _i 5 5 5 +_ 8 1 9)h4S(4)+
3V Sy 4y - 7 Yiu +(547" 557 +127 127 247 257 i1
(126° — 420y° + 540y —3157/ + 707/ *)y; +(-56y° +196y° — 260y " +1557° —35y°)hy! +
AR PR AEE AR a0 | R O AR A P A TARE-3 20 LI
v VAR YARY SRS A | T

is the ninth Hermite interpolation polynomial which interpolates Y, , yl, (4)
at X=X, and x = X;. Since |p;(X) — y;(X)| < Ch™, x e |, it follows that

d,,=d,, +O(h®), i=1ON

where
RACH
h yl'(x|) h yl,(xl 1) yl(Xi—1+Zl)
~ h?y!(x. - h?y!(x. e
d_i = ; m( |) _AllB 3y%”( i 1) _A 1D yl( |—1+22) (16)
' h*y; () hy;(Xi.1) Y1(Xi—1+z3)
h®y (x;) h*yf? (x.4) yl(xi—l+Z4)
Y1 (%)
Now using Taylor’s expansion
Y1(¥) =Gy () + O(h™), x e[%1, 1, y; € C*[a,b]
and observing that the method is exact for polynomials of degree <9 (that means for Y, = (|, we have d Qi,l =0)

we deduce, according to lemma 8.11 [6], that the method
is thus consistent and is of order nine for all Z,, Z,, Z;, Z, satisfying Tablel.

2.2 Ninth Spline Method for Indix-2 DAE:

Now, applying spline the method to index-2, relation (9) reduces to a set of the following algebraic equations:
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Sl(xi—l+Zj )= gl(xi—l+2j)7 17
SZ(Xi—1+ZJ-):gz(xi—1+2j)_81’(xi—1+zj) , J=10)4 , i=11)N (18)
Also, applying the approximations (4)-(6) to (18) we have
(1262} - 4202° +5407] —3152; +7027)SX + (562 +1967] - 260z +1552 -352;)S}!
21,5 77 46 65 .8 15 79y 23,6 11,7 7 (3],
+(5° 2] -5 7 +53zj—72 +52)S57 + (- z +BL - —jz ——z )S
1,5 1 1.7 1 [4] [0]
[(G77; —gzj +5 2 —gzj Jrﬂzj)szi +(630z] - 2520Z; +378oz. — 25207 +63ozj)SLi

+ (-2802] +11767 -18202 +12407] -3152}) / hSf! + AP 77 - 23127 + 37125 - 2602] +

13528)81[?+( 571 +2325 - 0L 25 +287] - B 2SI+ (2} -5+ L5 -4 2] +

J
32%)si/h=

~(1-1262] +4207; -5402] +3152; —702;)S}} | —(z; - 702} - 2242; - 2807] +1602°
FAYH 12355105 _ 15,9 \¢ql2] 1,3 5,5 20,6
-352;)S;1., —(§z. -7+ —632 +352 $27)S, — (527 -3, -5,
15 o _(Lzt_5 5,6_5 1 ,9\el4l
22 +4z - z )S (242. 24z.+12 12z +24z 542i)55i4
—[(-6302¢ + 25202° ~ 37802° + 252027 ~ 6302°)S!%), + (13502 +13442° ~19602° (19

+1280z] -3152°)SH, +(z, —%z;‘ +3152] - 4412° +280Z] —@23)8}?], ¥

(32 2—§z4+4oz?—%z?+322}—%z?)SEﬂl +(}2 —§z4+gz fgze+3z

~§ZDSILI/N+g,(Xwz), T =105
851 =0206) =81 /h 8Py = 0,(60) =S, /h 20)
Substituting (20) into (19), we get the following recurrence formula:
A,S,;=B;5,11+D,g,, i=10N, (21)
where
A, =(a?).B, = b7 ) ana D, = (02 ).
S, =(81.8{7.87.8:7,8;3,8,7.8,1. 8.
S =(8{01,871, 804,874,857 1,8:74,8571 4. 8174)
9,, = (91,i4: 9y i1421 9102, 1 9110250 O iaez, O i

921409212 92,1102y 9211240 921002, 02.1)

Multiplying (2.19) by Agl, we get

~

A 2|1+A 1D29 (22)
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~

—_ AN-1l
where /A\Z—A\2 BZ'

We can easily find that A2 has the form

A2 = ~ , Where A1 is the matrix (14).

2.3 Ninth Spline Method for Indix-v DAE:

In general, suppose that the method is applied to index-v, then (9) becomes:

Sl(xi—lJrZJ- )= gl(xi—l+2j ): (233)

S, (Xi—1+z]- )=0, (Xi—l+ZJ- )- S{(Xi—1+zj ). (23b)

v-1
S, (Xi—1+ZJ- )=49, (Xi—1+zj )+ Z‘,(_]—)V_r st (Xi—1+ZJ- ), 1=1D4, i=11)N (23c)

r=1L

Using the approximations (4)-(6) to (23a)-(23c) we get

§v, i = AV §v, i-1 + A;le QV, i (24)

where to this end, Av can be found after tedious calculations, as

where Av isa 4v x4v matrix, and which yields the following corollary.

Corollary 1. The 5-point spline collocation method is stable for linear constant-coefficient index-v DAEs if.

| 2;1<1 1=11)4,

where A;, j =1(1)4 are the eigenvalues of the matrix ;&1 the defined by (23).

Proof. ~ Note first that If 0<2z,<Z,<2,<z,<1l, then A, is  existed  because
A l— a- Zl)4v a- 22)4V a- 23)4V - 24)4V

|Av| v J4v L 4v 4y

#0. Since A, has the same eigenvalues of A; with multiplicity
Y 2y 23 7,

v, then according to Theorem 1 we find that four eigenvalues satisfy (15) for the same Z,, Z,, Z,, Z, listed in Tablel. [I
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Finally, for algebraic subsystem of index-v, the local error satisfies

[ 0,(%i4) ]
gl(xi—1+21)
hyi(x) ] - hyi(x,) | 9, (Xi1.z,)
h?yy(x;) h?yy(x.y) 91(Xi-1+23)
h®yy(x) hsyw Xi1) gl(xi—l+Z4)
h*y? () h*y{¥ (x4) 9:(x;)
d,=| : |-A!B : -A'D :
hy, (%) hy, (%) g,(X1)
2y (x,) 2y (x,,) 0. (%12
hy7(%;) h*yy(x;.,) 9, (Xi1.z,)
_h4Y§4)(Xi)_ _h4y54)(xi—1)_ gv(xi—l+23)
gv(xi—l+Z4)
g, (%)

Using Taylor’s expansion
Y;(X) =0y ;(x)+O(h), x €[4, ], y; € C*[a,b], j=1(D)v

We get

509 8,00~ 20713100 8,0+ (Y49
,v=1,2,...
YO (%) +O(h) + () ‘1Z(X Xy x ) +orn)

i X — x_l)

r=0

Thus, the local error is given by

¥1(x) =9,(x) = O(h™),
Y2 (X) =0,(x) + y;(x) = O(h°),

=1\, _ 9
Y, (X)=9,(¥) = (=D y, ., (x) = O(h")
We observe that the NSCM applied to index-1 system is consistent of order nine, while it is consistent of order eight for

index greater than one for all Z,, Z,, Z5, Z, given in Tablel.

Corollary 1 Let Y € Cg[a,b] be Lipschitz continuous. Then the spline approximation S(X) converges to the solution
y(X) as h — O whenever (15) is fulfilled and

limSg” =y (x,), =04
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Furthermore, the convergence order is nine for index-1 system, i.e., we have
ly (x)-S;|<ch®, i=1)N (25a)
and convergence order is eight for index greater than or equal two, i.e., we have
ly (x)-S;|<ch®, i=1)N (25b)
whenever the initial-values (7b) satisfy (25). In addition, the following global error estimate holds true:
y()-S; (x)|<Ch®, xe[a,b].
3. STRICT STABILITY

Before we can get started, we need the following definition.

Definition 2. The spline collocation method is strictly stable for the DAE (1.2) if the difference between perturbed spline
collocation methods step,

F (ti—l+Cj W (ti—l+Zj )+ 5%

v,i?

Wit ))=0, k=105, i=1ON, @)
whereW, =S, + 5., and Hé'\(,lfi)ué A,, k=0(1)5, and unperturbed spline collocation methods step (1.10), satisfy
”W (ti—1+Cj )- S(ti—1+2j )H < Ko, j=1(1)4, i=1(1N, where

O<h< ho and Ky, hg are constants depending only on the method and the DAEs.

We now solve (2.5) by the perturbed spline collocation method:

M W'(ti—l-I—Zj )+W (ti—l-I-Zj )-8\ = g(ti—l-I-Zj ). 1, k=1()5,

where W' = (W}, W,...,W.)", W = (W,,W,,...,W,)" .

\Y

Then, we have

Wi -A V_Vvi—l"'A “D g  +9,; (3.2)
' y—" y v :

—v,l

V!

where the perturbations 8, ; = (81",8\%,...,8%;,8,)" satisfy HE_SVY i H <A

— ® W@ @ \W T
Vlv,i_(\Nl"Wl,i oW 'Wv,i) '

, v, 11

_ @ (2) () (2) \T
Wv, i-1 1, i—1’Wl, 11 ’Wv, i—1’Wv, i—1) *
Subtracting (3.2) from the corresponding expressions for the unperturbed solution (2.22), and letting
E,i=W,;—S,;, weobtain,
Ev,i = AV Ev,ifl +év,i . (33)

Using || . ||OO , we have from (3.3)
||Ev,i ”S Rv”Ev,ifl ||+Av’ (34)
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where R, =|A, [land ||5,; [I<A

v

Inequality (3.4) is defined recursively by
i-1
IE.i ISRV IE o I+ R A, i=1ON.
k=0

which can be rewritten in the form

1R, A, i=L(L)N.
1-R

v

IE,: KR, IIE oI+

N
Note that lim 1-R, = 1
Noe 1-R 1-R,

if R, <1. Thus, we have the following theorem.

Theorem 3: The NSCM is strictly stable for index-v systems of DAEs iff:

R A, .<1. 5

~ ~ 4
Proof. To prove that inequality (3.5) holds, we easily find that R, =[| A, || =[| A, [l,=max>_|&}| v=1,
1<i<4 1 ’

~

where A, = (@,). Using Mathematia, we get the values of Z,, Z,, Z,, Z, which satisfy the relation R, <1 in

1-R
Y= K,A

Table3. Moreover, for R, <1,wehave Lim| E, ,|<|E,, |l LimR'+A, Lim
i—>w ’ - i—w i ] —
v

v

where K, =

. This implies according to Definition 2 that the QSCM applied for index-v systems is strictly

A%

stable. [

Table 3: strictly stable intervals determined by some values of 2, Z,, Z5, Z,

z,=0.6,2,=0.99,z,=0.999, z, =0.9999 R, =0.671843
z,=0.67,2,=0.94,2,=0.9999, z, =0.99999 | R =0.735844
z,=0.75,2,=0.8,z, =0.9999, z, =0.99999 R, =0.973009

z,=0.7,z,=0.9,2, =0.9999, z, =0.99999 R, =0.684216
z,=08,2,=09,2,=0.952, =0.99 R, =0.426894
z,=0.9,2,=0.98,z, =0.999, z, =0.9999 R, =0.012811

4. NUMERICAL RESULTS

In this section, four problems will be tested by using the spline method discussed above to demonstrate its efficiency for
both linear and nonlinear problems. All computations where made with Turbo Pascal in double precision.

Problem 1: Consider the problem having four linear differential equations and one linear algebraic equation [7]
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yy=—€' Y +Y,+Yy,+z-e"
Y2 ==Yy +Y, —sin(X) y; + z—cos(x) ,
yL =sin(x) y, + Yy, +sin(x) y, —sin?(x) —e *sin(x) , x [0, 10]
y, =Cos(X) Y, + Yy, +sin(x) y, —e *(L+sin(x)) —cos*(x) —e* ,
0=y,sin?(x)+ Y, cos’(x) + (Y, —e*)(sin(x) + 2cos(x))

+sin(x)(y, —e™)(sin(x) + cos(x) —1) —sin®(x) —cos*(x) .

The exact solution to this system is y; =Sin(x), Y, =cos(X), y3 =€*, y, =e % and z(x) =e*sin(x). Itis
easy to verify that system is index-2 for all x. The results of our method with z, =0.8,z, =0.9,z, =0.95,z, = 0.99
in Table 4 are compared with the results of quintic C*- spline collocation method [7] in Table 5.

Table 4: The absolute error for Problem 1

The Presented Method, h=0.1.

X 5y, 5y, 5 Y 5Y, 52
1.0 2.1E-16 6.1E-15 1.2E-15 1.4E-15 4.8E-15
2.0 9.9E-16 4.1E-15 9.4E-16 3.1E-15 7.2E-15
3.0 4.2E-16 1.3E-14 7.6E-15 5.4E-15 7.5E-16
4.0 3.3E-14 5.2E-13 5.2E-14 7.3E-14 1.7E-12
5.0 7.6E-14 8.8E-13 2.6E-13 3.4E-13 6.4E-12
6.0 4 5E-15 1.2E-12 6.6E-13 1.3E-14 1.0E-13
7.0 9.0E-15 6.3E-12 1.9E-12 2.0E-12 3.9E-12
8.0 2.4E-13 44E-11 9.8E-13 9.0E-12 7.3E-11
9.0 3.4E-15 2.7E-11 1.2E-11 7.6E-12 1.2E-11
10.0 1.8E-14 1.1E-10 2.7E-11 1.6E-11 2.6E-10

Table 5: The absolute error for Problem 1

Quintic C*- Spline Collocation Method [7] ( 2,=0.5, 2,=0.99), h=0.1.

Sy, 5, 5 Y, 5Y, oz

1.0 |16254E-12 [1.7312E-12 |[1.4800E-14 [1.9253E-12 |3.7635E-11
20 [1.9271E-12 [1.0742E-11 [1.6891E-12 [8.6127E-13 |1.0713E-10
30 [25514E-11 [3.9746E-11 [2.1647E-11 [5.2040E-12  |1.8240E-10
40 [1.9124E-11 |1.4622E-09 [1.2677E-10 |[2.0503E-10 |4.5873E-09
50 |5.2136E-09 [2.5915E-08 [4.7350E-10 [1.8017E-09 |7.6844E-07
60 |4.1878E-11 [1.7231E-09 [9.5689E-09 |1.6561E-10  |2.0305E-08
70 [4.3640E-11 [9.6056E-09 [2.9558E-09 |3.5497E-09  [9.0305E-08
80 [24179E-09 [1.0691E-07 [3.7785E-09 [1.6413E-08 |7.6251E-06
90 [5.1095E-12 [5.6267E-08 [2.7056E-08 |1.3849E-08 |1.8266E-06
10.0 [2.3257E-11 |2.2294E-07 [5.8476E-08 [2.0865E-08  |7.6798E-06

X

Problem 2: Consider the following differential algebraic equations with index-3 [11]

0 1 0)y, 0 1 x\v, 1
0 x 1]y,|+/0 2 0|y, |=|2x] X € [0, =] ,
0 0 O\y,) (0 x 1)y,) (e

The exact solutionis ¥, =€* =1, Y, =2x—e", y, = (1+X)e* —2X?. Table 6 appears comparisons between

the absolute errors by our method and by using Pade approximation method in [11].
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Table 6: The absolute errors for Problem 2

. . The Presented Method , h=0.1.
) Tabatabaei and Celik [11] z,=08,2, =0.9,2, =0.95,z, = 0.99
S Yy 5Y, 9 Y, 9, 5Y, s
01 |1.0E-11 10E-11 |1.0E-10 |12E-14 3.2E-16 2.0 E-18
02 |1.0E-10 10E-10 |[2.0E-09 |2.3E-14 3.0E-16 1.1E-17
0.3 |1.0E-10 40E-10 |1.0E-10 |3.3E-14 5.2 E-16 1.0 E-16
0.4 |3.0E-10 40E-10 |1.0E-09 |[3.4E-13 7.3 E-16 3.4 E-16
05 |[3.0E-10 4.0E-10 |1.0E-09 |[3.0E-13 7.7 E-16 7.2 E-16
0.6 1.0E-10 6.0E-10 |1.0E-09 |4.5E-14 1.2 E-16 1.3 E-17
0.7 |3.0E-10 6.0E-10 |3.0E-09 |[3.6E-13 9.4 E-16 7.3 E-16
08 |[1.0E-11 4.0E-10 |9.0E-09 |2.2E-13 5.1 E-16 5.4 E-16
0.9 |5.0E-10 1.6E-09 |3.0E-08 |1.1E-13 7.9 E-16 7.6 E-16
1.0 |1.2E-09 4.0E-09 |8.80E-08 |6.3E-15 1.0E-16 1.0 E-16
S e e 5.3 E-13 1.2 E-14 4.3 E-15
60 |- |ee [ 3.9E-11 1.3 E-13 8.3E-14
90 |- e [ 6.1 E-10 5.6 E-12 7.8 E-12
10 |-— |- |- 9.2 E-10 8.9 E-12 5.1E-11

Problem 3: Consider index-2 Hessenberg DAE system with nonlinear differential equations and a nonlinear algebraic
equation, as follows [12]:

yr = Yi(4y; =1 +2(1-3t)y,
Ys = 2sin(y;) + Y,(4y, -1)
Vi +t0y; 7 =0,
subject to the y;(0)=0, y;(0)=0, y,(0)=1, y,(0)=0. The exact solution is

y,(t) =t(1—t), y,(t) =tsin(y,(t)), v, (t) =cos(y,(t)). For comparison, we list in Table 7 the absolute errors

by our method and by using Dhamacharoen method in [12]. Fig.1-3 explain the approximate spline solutions and the
exact solution of y , v, , y3 by the presented method , for h=1/12.

initial conditions

0.16 A
0.14 4
0.12 A
0.1 A
0.08 A
0.06 -
0.04 4
0.02 4

0 © t
0

V1

Exact

Fig.1: The spline solution S(x) and the exact solution y, , for Problem3, h=1/12.
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0.995
0.99

0.985

0.98 Exact

0.975 - —O— Approx.

0.97 A
0-965 1 1 L] L] E
0 0.2 0.4 0.6 0.8 1

Fig.2: The spline solution S(x) and the exact solution y, for Problem3, h=1/12.

0.25 -

Exact
—O— Approx.

Y3

0.2 A

0.15 -

0.1 A

0.05 -

0 0.2 0.4 0.6 0.8 1

Fig.3. The spline solution and the exact solution y; for problem 3, for h=1/12.

Table 7: The absolute error for problem 3

Present spline method using the
step size h=1/12

5y1 5)/2 5}’3 5y1 §y2 5y3
1/12  |0.0000000 |0.0000000 |0.0028285 |2.5E-14 |[2.3E-14 |9.3E-14
1/6 0.0000000 |0.0000000 |0.0027746 |8.5E-14 7.1E-14 |29E-13
1/4 0.0000000 |0.0000000 |0.0028155 |1.5E-13 |1.3E-13 |[3.9E-13
1/3 0.0000000 |0.0000000 |0.0027597 |2.3E-13 |14E-13 |4.8E-13
5/12 |0.0000000 |0.0000000 |0.0027960 |3.5E-13 |2.2E-13 |5.3E-13
1/2 0.0000000 |0.0000000 |0.0027367 |3.8E-13 |2.3E-13 |[4.8E-13
7/12 | 0.0000000 |0.0000000 |0.0027705 |4.7E-13 |2.4E-13 |3.6E-13
2/3 0.0000000 |0.0000000 |0.0027101 |5.6E-13 |[2.2E-13 |4.8E-13
3/4 0.0000000 |0.0000000 |0.0027448 |6.4E-13 |1.8E-13 |[1.8E-13
5/6 0.0000000 |0.0000000 |0.0026872 |7.1E-13 |1.2E-13 |5.7E-13
11/12 |0.0000000 |0.0000000 |0.0027271 |7.3E-13 |6.9E-14 |7.8E-13
1 0.0000000 |0.0000000 |0.0026781 |6.9E-13 |0.0E+00 |[1.5E-12

Dhamacharoen method in [11]
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Problem 4: Consider the linear index-5 DAE

y:1—Y¥,=0, y;-y;=0,

Y:—Y¥,=0,
y, —Sin(x) =0,

Ya—Y¥;=0,
t [0, 10],

subject to the initial conditions y;(0)=0, y»(0)=1, y3(0)=0, y4(0)=-1. The exact solution is y;(x)=sin(x), y,(x)=cos(x), yz(X)=-
sin(x), y4(x)=-cos(x), ys(x)=Sin(x). We show the computational results in Table8. Fig.(1) explains the approximate spline
solution and the exact solution of y; , ¥, , V3, V4, Y5 by 2,=0.8, 2,=0.9, z3:=0.966; z,:=0.988 and h=0.4.

Table 8: The absolute error for problem 4 by present method

t A oY, 0Y, 0Y, 0Ys
0.40 |0.0E+00 8.9E-17 8.2E-0014 |2.1E-0011 |2.8E-09
1.20 |0.0E+00 2.9E-16 1.9E-0013 |4.4E-0011 |5.5E-09
2.00 |0.0E+00 3.7E-16 2.0E-0013 |4.5E-0011 |7.0E-09
2.80 |0.0E+00 2.3E-16 1.0E-0013 |2.7E-0011 |8.4E-09
3.60 |0.0E+00 9.6E-17 5.1E-0014 |4.4E-0012 |1.2E-08
440 |0.0E+00 2.8E-16 1.6E-0013 |3.2E-0012 |2.0E-08
520 |0.0E+00 3.2E-16 1.4E-0013 |1.8E-0011 |3.5E-08
6.00 |0.0E+00 1.2E-16 5.3E-0015 |6.9E-0011 |6.0E-08
6.80 |0.0E+00 1.9E-16 1.9E-0013 |1.3E-0010 |7.6E-08
7.60 |0.0E+00 3.5E-16 3.1E-0013 |2.0E-0010 |8.5E-08
8.40 |0.0E+00 2.9E-16 3.2E-0013 |2.6E-0010 |9.0E-08
9.20 |0.0E+00 2.9E-16 2.6E-0013 |3.2E-0010 |1.0E-07
10 0.0E+00 5.6E-17 1.8E-0013 |[4.1E-0010 |2.1E-07
1.1 — Vs
0.8 <
0.6 ys
0.3
0.1 Y1 and Y5
-0.2
-0.5 y
-0.7 2
1.0 —
-1.2 -
Fig.4. The approximate solution and the exact solution of y; , ..., ys

by 2,=0.8, 2,=0.9, z53:=0.966; z,:=0.988 and h=0.4, for problem 4.

5. CONCLUSIONS

The five point spline collocation method is successfully used for finding the approximate solutions of problems in higher
index differential-algebraic equations. This method is tested on four linear and nonlinear problems and the results
obtained are very encouraging and the purposed spline method performs better than the existing methods.
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