MOLeCULAR STUDIES AND PHARMACOLOGICAL ROLE OF PITHECELLOBIUM DULCES

E. RAJITHA, SRIHARI LAKSHMAN M.V, REBBANIBONI NANDINI

DOI: https://doi.org/10.5281/zenodo.8124250
Acceptance Date: 09-May-2023, Published Date: 07-July-2023

Abstract: Pithecellobium dulce is a medium-sized, evergreen tree with tremendous nutritional value; each portion of the plant is packed with important vitamins, amino acids, and minerals. P. dulce's fruits have long been employed in Ayurvedic medicine and folk cures. The plant also contains biologically active mixtures like tannin, olein, and glycosides. From the plant's different necks, 38 functional phytocompounds such as quercetin, kaempferol, and dulcitol were linked. The bark of this plant contains catechol tannins. Polyphenols are phytocompounds that have their own factory and have a lot of catholicon activity. Their fruits are high in phenols, flavonoids, and saponins, which have been linked to the treatment of diabetes, oxidative stress, and gastrointestinal problems, as well as anticonvulsant and cardioprotective properties, anti-ulcerogenic, anti-proliferative the antibacterial, antifungal, and adulticidal properties of the plant flake and seed are all present. As a result, the current study focuses on exploiting medicinal parcels of P. dulce as well as its biological operations in remedial development.

Keywords: Pithecellobium dulce, anti-diabetic, anti-inflammatory, antioxidant, anti-fungal, anti-bacterial, anti-ulcerogenic.

1. INTRODUCTION

Pithecellobium dulce benth, a member of the Leguminosae family, is an evergreen tree native to the southern parts of India and Southeast Asia. P. dulce, sometimes known as manila tamarind, is one of the most well-known species among them. The species name, 'dulce,' is derived from the Greek term 'Pithekos. It is endemic to the Pacific Coast and conterminous mounds of Mexico, Central America, and Northern South America, and is farmed across the down of India and the Andaman Islands. It is a delicate to medium-sized, evergreen, unpleasant tree that grows to a height of 18 meters. The business is well-known for its edible fruits, which have traditionally been devoured for colorful emotions. The fruits are twisted, straight legumes (capsules) with a length of 10 to 13 cm. A single cover usually contains 10 seeds, and the capsules are irregularly shaped and smoothed, strangled between the seeds in gyrations of 1 to 3 spirals (lomentaceous). Seeds are black and candescent, with a 1cm perimeter and a crimson funicle dangling from the capsules. Both sides of the cover are dehiscent (Murugesan, Lakshmanan et al. 2019).

Taxonomical Classification of Pithecellobium dulce (Rao, Samyuktha et al. 2018)

Kingdom : Plantae
Sub Kingdom : Viridiplantae
Infra Kingdom : Streptophyta
Division : Tracheophyta
Order : Fabales
Family : Leguminosae
Genus : Pithecellobium
Species : dulce
Vernacular Names (Rao, Samyuktha et al. 2018)

English : Sweet Tamarind
Telugu : Seema Chinta
Hindi : Jangle jalebi
Bengali : Dekhni babul
Tamil : Kodukkaapuli
Kannada : Kottampuli
Malayalam : Korukkapuli
Japanese : Huamuche, Guamuche
Javanese : Asem londo, Asam belanda
Philippines : Camachile
Sanskrit : Kodukkaapuli
Spanish : Guamuchil, Guama americano, Quamachil
Tamil : Kodukkaapuli
Thai : Makham-khong, makham-tha

FRUITS

Table 1: Number of *Pithecellobium* Species (Rao, Samyuktha et al. 2018)

<table>
<thead>
<tr>
<th>S No.</th>
<th>Name of the plant</th>
<th>Isolated Phyto-constituents</th>
</tr>
</thead>
</table>
| 1 | *Pithecellobium* albicans | Gallic acid
Afzelin
Kaempferol
Quercetin
Quercitrin
Spinasterol |
| 2 | *Pithecellobium* arboreatum | Oleonolic acid
α Spinasterol |
| 3 | *Pithecellobium* clypearia | 1-Octacosanol
-O-galloylplumbo catechin
Penta-hydroxyflavan-7-gallate
Tetrahydroxyflavan-7-gallate |
| 4 | *Pithecellobium* cauliflorum | Glucosylsterol |
| 5 | *Pithecellobium* cubense | Oleonolic acid
α -Spinasterol |
6. *Pithecellobium jiringa*
 Djenolic acid
 Gallicatechin
 Procyanidinds

7. *Pithecellobium lucidum*
 Julibroside
 Galloyl acid
 Ethyl gallate
 Gallocatechin gallate

8. *Pithecellobium monodelphum*
 Biodiesel contains:
 Methyl palmitate
 Methyl stearate
 Methyl arachidate
 Methyl lineolate

9. *Pithecellobium multiflorum*
 Lupeol
 α-Spinasterol

10. *Pithecellobium saman*
 Epilupeol
 Lupenone
 α-Spinasterol
 α-Spinasterone

Table 2: Pharmacological Activity of *Pithecellobium dulce*

<table>
<thead>
<tr>
<th>Species</th>
<th>Part of the plant</th>
<th>Extract</th>
<th>Activity</th>
<th>Method & Animal used</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pithecellobium dulce</td>
<td>Fruit peel</td>
<td>Petroleum ether extract</td>
<td>Anti-bacterial</td>
<td>The capacity of all extracts to quench the DPPH radical suggests that they are excellent antioxidants. Both gram-positive and gram-negative bacteria are effectively inhibited by pulp extract. In the gram-negative, the extract revealed a maximum clearance zone. Pneumocystis pneumoniae</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Peel methanolic ethyl acetate aqueous pulp</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metonic leaf extract</td>
<td>Acetone extract Water</td>
<td>Antioxidant (Katekhaye and Kale 2012, Nagmoti, Khatri et al. 2012)</td>
<td>It was discovered that the aqueous and methanolic extracts had respective total phenolic contents of 1.31 0.006 and 1.74 0.003 mg gallic acid equivalents/g of extract powder. As the extract concentration increased, so did the reducing power. The phenolic content of the MB, AB, ML, and AL extracts (5 mg/ml) was 0.129 0.11, 0.190 0.14, 0.084 0.24, and 0.115 0.25 g/ml, while the flavonoid content was 0.43 0.01, 0.23 0.01, 0.90 0.01, and 0.25 0.01 g/ml, respectively.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethanol and Aqueous</td>
<td>Anti-Inflammatory</td>
<td>When compared to Aspirin, secondary metabolites showed a higher reaction percent of inhibition of protein denaturation and HRBC membrane stability (Standard Drug). By lowering paw quantity at the sampled cure place, both excerpts demonstrated eloquent anti-inflammatory exertion. The ethanol excerpt, which was identical to diclofenac sodium, a common anti-inflammatory drug, exhibited more exertion than the waterless snippet.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rats</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anti-Diabetic (Srinivas, Geeta et al. 2018)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alcoholic fruit</td>
<td>Rats</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>For 30 days, diabetic rats were given P. dulce fruit extract (300 mg/kg b.w /day) orally, which dramatically lowered blood glucose, glycosylated haemoglobin, urea, and creatinine levels. In treated diabetic rats, oral treatment of PDM (125, 250, and 500 mg/kg) for 21 days led to a significantly lower fasting blood glucose and HbA1C as well as a significantly higher body weight, serum insulin, total protein, and liver glycogen levels. PDM successfully brought diabetes brought on by streptozotocin's dyslipidemia back to normal. In treated diabetic rats, levels of lipid peroxides were controlled while antioxidant enzyme activity and reduced glutathione concentration were found to be dramatically increased in the pancreas, kidney, and liver.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaf aqueous solvent</td>
<td>Agar well prolixity method was used to assess the anti-microbial exertion of splint excerpts against gram-positive Bacillus subtilis, E. faecalis, M. luteus, S. aureus and S. epidermidis), seven Gram-negative (Aeromonas hydrophila, A. faecalis, E. aerogenes, E. coli, K. pneumoniae, P. aeruginosa and S. typhimurium) bacteria and eight fungi A. flavus, A. niger, A. oryzae, A. terreus, A. alternata, Alternaria brasicola, A. solani and A. vitis). The excerpts showed variable inhibition zone (ranging between 7 to 27mm) against utmost of the tested microbes. Solvent excerpts were plant to be more effective than the waterless excerpt. The most susceptible microorganism was E. faecalis flaunting a zone of inhibition of 27mm. The smallest MIC values were attained against E. faecalis, indicating the vulnerability of the strain for all the excerpts. The excerpts revealed a varied inhibitory zone (ranging from 7 to 27mm) against most of the microorganisms tested. Waterless excerpts were found to be less effective than solvent extracts. E. faecalis was the most vulnerable bacterium, with a 27mm inhibition zone. The MIC values for E. faecalis were the least, showing that the strain was vulnerable to all of the antibiotics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ethanol aqueous</td>
<td>Wister albino rats were used to create a diarrhea model. The anti-diarrheal activity of P. dulce ethanol extract using castor oil produced diarrhea in rats, and the loperamides were found to be anti-diarrheal (standard drug). When compared to the control group, the extract dramatically reduced the amount of wet faeces and the total number of faeces.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fruit Extract</td>
<td>Model- Rats pretreated with HAEPD (200 mg/kg b wt for 30 days) were given alcohol, acetylsalicylic acid, or hypothermic restraint stress to generate gastric ulcers. stomach tissues were examined for the amount of stomach fluid,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P. dulce is a plant that has a long history of use in traditional medicine. In the plant P. dulce, a wide range of chemical components can be found. Although Pithecellobium dulce contains a number of medicinal characteristics that aid in disease resistance or prevention, some of its mechanisms of action are yet unknown. However, more research and bioassays are needed to fully comprehend the plant Pithecellobium dulce’s potential. It has significant economic and theoretical worth, and it has to be examined more thoroughly and methodically on the basis of existing research in order to help conventional medicine modernize.

REFERENCES

