
                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 1 
Novelty Journals 

 

REVISITED SOFTWARE ERROR 

CLASSIFICATION AND TYPES WITH 

ERROR TAXONOMY 

Javed Ahmad Shaheen 

Virtual University of Pakistan Lahore, Pakistan 

Abstract: There have been a lot of Errors (defects) classification systems in industry to seek and establish common 

Error. We know Testing is the one of the important component of any software engineering process which results 

to find Errors (defects) in software. We must classify Errors and bugs so that the resulted classifications are little 

bit similar and also contain variations. Therefore there should be specific tool for testing. The tools are exist but 

none of which is accepted as a basic tool in software engineering projects upon which I emphasis to discover all 

errors (defects). In this paper I summarize the work on Errors (defects) classifications and its types and I also 

reexamine Errors (defects) taxonomy so far aims a set of challenges with the direction to a solution. It must be 

known that Systematic Error management based on bug tracking systems to find and resolve errors in software. 

Keywords: Errors (Defects), Testing, Errors (defects) Types, Errors (defects) Classification, Error (defects) Taxonomy. 

I.  INTRODUCTION 

We want to discover errors in software, we use software testing. As Software testing, identifies Errors, and we must have 

to know that Error is any variance between actual and expected output. Software testing is that phase in which I are 

analyzing the software to identifies the errors so that the software become error free. It is impossible to produce Error free 

software products; however, the main purpose of any software engineering activity is to prevent Errors from being 

introduced in the first place. A Error is defined as An incorrect step, process, or data definition in a computer program. 

[Society, 1990, page 32]. There is confusion in the terminology used concerning the terms Errors, mistakes, defects and 

failures. The difference between the terms is explained by [Society,1990]: The terms Error and fault are same. Both imply 

a quality problem that is discovered after the software has been released to end users. Error is any flaw in the software 

system. When I test the Ib site or any Ib application and there is difference between expected results and the actual results, 

there is Error. Errors are divided in to 3 categories: Wrong, Missing and extra (table 1). There are many examples of 

Errors that can come in testing the Ibsite or any Ib application or any software: here I explain it with Ib application like: 

Table 1: Categories of Errors 

Category Examples 

Wrong User gives wrong/incomplete requirements for developing Ib 

application. Error in coding, in testing, Data entry errors also 

Mistakes in error correction or Analyst interprets requirements 

incorrectly 

Missing Incorrect design specifications or missed out some any specifications. 

Extra Developer done something extra in Ib application but client doesn’t 

require. Poor documentation. 



                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 2 
Novelty Journals 

 

II.   LIFE CYCLE OF ERRORS 

There are various Errors like new, open, review, rejected, test verified, not anError etc (fig 4). Error age or phase age is 

the important concept in testing that means later I find the Error the more it cost to fix it. Error spoilage is the concept 

which works on same concept that how late I find the Errors or bugs. When Errors are getting fixed during Error life cycle 

then Retesting and Regression testing is performed. Retesting is testing is performed to check that Error get fixed or not 

while in regression testing is performed to check that checked tests should not affect the unchecked tests. 

 

III.   HARSHNESS OF ERRORS 

Severity (harshness) shows how bad the bug is and reflects its impact to the product and to the user. This changes from 

organization to organization or varies from projects to projects (table 2). 

Table 2: Severity of Errors 

Severity Description Criteria 

1 Very high 

Inability to install/uninstall the product, product will 

not start, product hangs or operating system freezes, 

data corruption, product abnormally terminates etc so 

they are also called showstopper Errors. 

2 High 

Function is not working according to specifications, 

critical to customer etc that means application can 

continue with severe Errors. 

3 Medium 
Incorrect error message, incorrect data, etc means 

application continue with unexpected results. 

4 low 

Spelling, grammar mistakes etc that is Errors with 

these severities are suggestions given to client to 

make application better. 

IV.   PRIORITY OF ERRORS 

Priority can be decided on the basis of how frequently the Error occurs i.e. probability of occurrence of Error (table 3). 

Table 3: Priority of Errors 

Priority Description Criteria 

1 Very high Immediate fix, block further 

testing 

2 High Must fix before product is 

released 

3 Medium Should fix if time permits 

4 Low Would like fix but can be 

released as it is 



                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 3 
Novelty Journals 

 

V.   LITERATURE REVIEW ABOUT ERRORS 

In 2009, Chen and Huang performed an e-mail survey with several software projects, and presented the top 10 higher 

severity problem factors affecting software maintainability, as summarized in table I [2]. The authors has to indicate the 

following causes of software Errors [2]: a significant percentage of Errors is caused by incorrect specifications and 

translation of requirements, or incomplete ones [7-8]; half of the problems rooted in requirements are due to ambiguous, 

poorly written, unclear and incorrect requirements, the other half result of omitted requirements [9]. In 2003, Lutz and 

Mikulski analyzed the impact and causes of requirements Errors discovered in the testing phase, resulting from non 

documented changes or Errors in the requirements, and proposed guidelines to distinguish and respond to each situation 

[10]. Their work emphasizes the importance of requirements management. 

Table 4: Top 10 High Severity Factors: 

Sr#  development factors Problem Dimension 

1 Inadequacy of source code comments Programming Quality 

2 Documentation obscure/untrustworthy Documentation Quality 

3 Changes not adequately documented Documentation Quality 

4 Lack of traceability Documentation Quality 

5 Lack of adherence to standards Programming Quality 

6 Lack of integrity/consistency Documentation Quality 

7 Continually changing requirements System Requirements 

8 Frequent turnover within the project 

team 

Personnel Resources 

9 Improper usage of techniques Programming Quality 

10 Lack of consideration for software 

quality requirements 

System Requirements 

VI.   I PRESENT THE FOLLOWING SUBSECTIONS WORK THAT IS RELATED WITH OR 

INCLUDES A REQUIREMENTS ERRORS CLASSIFICATION. 

VI. A Code Errors Classifications, 1992: 

The Error types used are: function, interface, checking, assignment, timing/ serialization, build / package / merge, 

documentation and algorithm. For each Error it is necessary to indicate if the feature is incorrect or missing [11]. Such 

classifiers do not seem completely adequate to classify requirements. Errors and documentation is basic to give further 

information on the Error. The Hewlett-Packard (HP) [12] categorizes the Errors by mode, type and origin, (see figure 1) 

[6]. From the types of Errors with origin in the requirements /specifications phase, the requirements/ specifications seems 

to be vague and the interfaces ones are too detailed and more adequate to design specification Errors. 

VI. B. Quality Based Classifiers, 1976 – 2010:  

This section presents the work of several authors applied quality based requirements Errors. In 1976, Bell and Thayer did 

a research to verify the impact of software requirements Errors. They resulted that software systems meeting Error 

requirements will not effectively solve basic needs [13]. They aggregated the Errors in categories, as presented in table 3. 

In 1989, Ackerman etal analyzed the effectiveness of software inspections as a verification process [15]. They presented a 

sample requirements checklist to use in inspections of requirements documents, containing questions organized by Error 

categories: completeness, consistency and ambiguity.  



                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 4 
Novelty Journals 

 

 

Figure 1: HP Errors classification scheme [6]. 

In 2003, Hayes designed requirements fault taxonomy for NASA’s critical/catastrophic high-risk systems. Hayes stated 

that ODC refers to design and code while their approach emphasized requirements, so they adapted the Nuclear 

Regulatory Commission (NRC) requirement fault taxonomy from NUREG/CR-6316 (1995). [17] Afterwards, in 2006, 

Hayes et al analyzed a software product related with the previous to build a common cause tree [18]. In both works 

unachievable was reserved for future.  

VI.C. Functional and Quality Based Classifiers, 1992 – 2009:  

In this section I have to present Error classification taxonomies that are functional and quality based. In our research paper 

I consider that the functional classifiers represent the function of the requirement in the product. In 1992, Schneider 

identified two classes of requirements Errors that is missing Information and Wrong Information (table 3). They 

performed an experiment where two Software Requirements Specification (SRS) documents Ire inspected with a 

combination of adhoc, checklist and scenario inspection methods. The checklist was organized in categories, resembling a 

Error classification: omission and commission. The scenarios also included categories: data type consistency, incorrect 

functionality, ambiguity, and missing functionality. The authors concluded from their results that the scenario inspection 

method was the most effective for requirements [17]. Later, in 2007, Walia repeated an experiment to show the 

importance of requirements Errors taxonomy. They involved software engineering students in a SRS document review 

using an Error checklist. The students repeated the review and after being trained in the error abstraction process and do 

experiment which shoId that error abstraction leads to more Errors found without losses of efficiency and the abstraction 

is harder when people are not involved in the elaboration of the SRS and have no contact with developers. Requirements 

Errors Ire classified as: general, missing functionality, missing performance, missing interface, missing environment, 

ambiguous information, inconsistent information, incorrect or extra functionality, wrong section, and other faults [12].  

VII.   ERROR TAXONOMIES FOR SOFTWARE REQUIREMENT 

Error taxonomy accumulates and arranges the domain knowledge, project experience of experts and a valuable instrument 

for requirements based testing for different issues and reasons. It is systematic backup for the design of tests, support 

decisions for the allocation of testing resources, improve the review of requirements and offer a suitable basis for 

measuring the product quality. In this paper, I review a method of requirements based testing with Error taxonomies. I 

point out how Error taxonomies can be integrated into a standard test process and discuss results and lessons learned with 

reference to industrial projects from a public health insurance institution where this approach has been successfully 

applied. Error taxonomy is a system based on hierarchical categories designed. It is useful aid for reproducibly classifying 

faults and failures [2]. It is concerned with eradicating the prejudice of classifier. It is also creating distinct categories with 

the purpose of effective measuring and testing, Error management and product quality. Beizer has defined the generic 

Error taxonomy widely used in software testing [5]. It consists of nine categories:(1) requirements (2) features and 

functionality (3) structural Errors (4) data (5) implementation and coding (6) integration (7) system, software architecture 

(8) test definition and execution as Ill as (9) unclassified Errors. The Error taxonomy of Project A is based on the Beizer 

taxonomy because of its suitability for system testing and the experience with it available in the development 



                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 5 
Novelty Journals 

 

organization. It has three levels of abstraction. The high level categories are mapped to product specific categories which 

are then further refined to concrete low level Error categories with an assigned identifier and severity. The possible values 

for the severity of the Error categories as Ill as of the failures follow Bugzilla [1], and may be blocker, critical, major, 

normal, minor, or trivial.When creating Error taxonomies, Error data from completed projects and the feedback from 

affected roles such as developers or testers should be taken into account. 

VIII.   CONCLUSIONS AND FUTURE WORK 

If I elaborate the software testing, I can find that software performed as what it is supposed to do and software not 

performing what it is not supposed to do. No errors identification without software testing and I cannot find the Errors as 

soon as possible and not to get them fixed which means it is not all about to correct the code but to search the bugs or find 

the errors in code. Therefore it is necessary for testing process that the testers must write accurately test cases so that it 

can find out hidden Errors from the programs. An Error taxonomy is created as, it supports the specific analysis interests 

of the organization which uses it, namely in the implementation of Error causal analysis [11]. In our work based on a 

literature review I assembled a classification for Error types in requirements specifications, following the 

recommendations in [6]. Such classification is important to support the analysis of root causes of Errors and their 

resolution, to create checklists that improve requirements reviews and to prevent risks resulting from requirements Errors. 

I evaluated our classification scheme through two experiments where students had to classify Errors identified in a SRS 

document. I concluded that after refining the classification list, different people may classify the same Error in a different 

way so by choosing a classification for requirements Errors organizations it is need to be aware of the problems of using 

them. People may interpret the classifiers differently and performing retrospective analysis of Errors which is simply 

based on the type of Errors, it might be misleading. Experiments similar to the ones discussed in this paper may be 

adopted to get the degree of consensus betIen their personnel. As future research work I propose to enhance the classifier 

and tester and perform modified experiments “on the job” using individuals from industry; (2) by using a SRS document 

from a project they are involved in; (3) having each individual conduct a complete SRS review to detect and subsequently 

classify Errors. I expect that the classification difficulties will be attenuated in this setting, leading to more accurate and 

unanimous classifications. I will also use the Errors classification to create a checklist to be used in the requirements 

inspections, and will conduct experiments with a control group not using the checklist to assess their impact on the review 

efficacy, efficiency and convergence.  

REFERENCES 

[1] IEEE, "IEEE Standard Glossary of Software Engineering Terminology," ed: IEEE Press, 1990. 

[2] J.-C. Chen and S.-J. Huang, "An empirical analysis of the impact of software development problem factors on 

software maintainability," Journal of Systems and Software, vol. 82, pp. 981-992 June 2009. 

[3] M. Hamill and G.-P. Katerina, "Common Trends in Software Fault andFailure Data," IEEE Trans. Softw. Eng., vol. 

35, pp. 484-496, 2009. 

[4] D. N. Card, "Learning from Our Mistakes with Error Causal Analysis," IEEE Softw., vol. 15, pp. 56-63, 1998. 

[5] K. Henningsson and C. Wohlin, "Assuring Fault Classification Agreement - An Empirical Evaluation," presented at 

the International Symposium on Empirical Software Engineering, Redondo Beach, California, 2004. 

[6] B. Freimut, et al., "An Industrial Case Study of Implementing and Validating Error Classification for Process 

Improvement and Quality Management," presented at the Proceedings of the 11th IEEE International Software 

Metrics Symposium, 2005. 

[7] L. Apfelbaum and J. Doyle, "Model based testing," presented at the 10
th 

International Software Quality Iek 

Conference, San Francisco, 1997. 

[8] Software Risk Abatement, AFCS/AFLC Pamphlet 800-45, U.S. Air Force, September 30, 1988. 

[9] Arthur, L. J., “Quantum Improvements in Software System Quality,” CACM, vol. 40, no. 6,June 1997, pp. 47–52. 



                                                                                                                             ISSN 2394-7314 

International Journal of Novel Research in Computer Science and Software Engineering 
Vol. 3, Issue 3, pp: (1-6), Month: September - December 2016, Available at: www.noveltyjournals.com 

 

Page | 6 
Novelty Journals 

 

[10] J.H. Hayes, et al., “A metrics-based software maintenance effort model,” Proc. Eighth Euromicro Working 

Conference on Software Maintenance and Reengineering (CSMR'04), IEEE Computer Society, 2004, pp. 254. 

[11] .A. De Lucia, et al., “Assessing effort estimation models for corrective maintenance through empirical studies,” 

Information and Software Technology, vol. 47, no. 1, 2005, pp. 3-15. 

[12] N. Gorla, et al., “Debugging effort estimation using software Metrics,” IEEE Transactions on Software Engineering, 

vol. 16, no. 2, 1990, pp. 223-231. 

[13] .M. Xie and B. Yang, “A Study of the effect of imperfect debugging on software development cost,” IEEE 

Transactions on Software Engineering, vol. 29, no. 5, 2003, pp. 471-473. 

[14] .M. Jørgensen and D.I.K. Sjøberg, “Impact of experience on maintenance skills,” Journal of Software Maintenance, 

vol. 14, no. 2, 2002, pp. 123-146. 

[15] B.S. Rao and N.L. Sarda, “Effort drivers in maintenance outsourcing - an experiment using taguchi's methodology,” 

Proc.Seventh European Conference on Software Maintenance and Reengineering, IEEE Computer Society, 2003, 

[16] Software testing best practices,Ram Chillarege,IBM Research-Technical report RC 21457 

[17] Software Testing Techniques- Shivkumar Hasmukhrai Trivedi [B.com, M.Sc I.T (Information Technology), 

P.G.D.B.M –Pursuing] Senior System Administrator, S.E.C.C [Socio Economic and Cast Census] Central Govt. 

Project – Bhavnagar [Gujarat – India], Volume 2, Issue 10, October 2012 ISSN: 2277 128X International Journal of 

Advanced Research in Computer Science and Software Engineering 

 


