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Abstract: In this paper, a new double glow-worms swarm co-evolution optimization algorithm based Levy flights 

(DGLF) is proposed to solve optimal reactive power dispatch problem.  According to the dissimilar colours of light 

emitted by glowworm swarm, a certain amount of glowworm swarm was divided into two groups. Levy flights 

with higher arbitrariness were introduced into one group. Then the two groups of glowworm swarm search for the 

optimal solution simultaneously and co-evolution for achieving the global optimization. The proposed DGLF has 

been tested on standard IEEE 30, IEEE 57 bus test systems and simulation results show clearly the better 

performance of the proposed algorithm in reducing the real power loss. 

Keywords: Optimal Reactive Power, Transmission loss, Glowworm swarm optimization, Levy flights, double glow-

worms swarm co-evolution. 

I.     INTRODUCTION 

Optimal reactive power dispatch (ORPD) problem is to minimize the real power loss and bus voltage deviation. Various 

numerical methods like the gradient method [1-2], Newton method [3] and linear programming [4-7] have been adopted 

to solve the optimal reactive power dispatch problem. Both   the gradient and Newton methods have the complexity in 

managing inequality constraints. If linear programming is applied then the input- output function has to be uttered as a set 

of linear functions which mostly lead to loss of accuracy.   The problem of voltage stability and collapse play a   major 

role in power system planning and operation [8].  Evolutionary algorithms such as genetic algorithm have been already 

proposed to solve the reactive power flow problem [9-11]. Evolutionary algorithm is a heuristic approach used for 

minimization problems by utilizing nonlinear and non-differentiable continuous space functions. In [12], Hybrid 

differential evolution algorithm is proposed to improve the voltage stability index. In [13] Biogeography Based algorithm 

is projected to solve the reactive power dispatch problem. In [14], a fuzzy based method is used to solve the optimal 

reactive power scheduling method. In [15], an improved evolutionary programming is used to solve the optimal reactive 

power dispatch problem. In [16], the optimal reactive power flow problem is solved by integrating a genetic algorithm 

with a nonlinear interior point method. In [17], a pattern algorithm is used to solve ac-dc optimal reactive power flow 

model with the generator capability limits. In [18], F. Capitanescu proposes a two-step approach to evaluate Reactive 

power reserves with respect to operating constraints and voltage stability.  In [19], a programming based approach is used 

to solve the optimal reactive power dispatch problem. In [20], A. Kargarian et al present a probabilistic algorithm for 

optimal reactive power provision in hybrid electricity markets with uncertain loads. Inspired by the behaviour of natural 

glowworm swarm, Glowworm Swarm Optimization (GSO) algorithm which is a novel swarm intelligence algorithm was 

advanced by Indian scholars Krishnan and Ghose in 2005 years [21, 22]. But the fundamental GSO algorithm has some 

shortcomings, such as slow convergence, squat precision and trouble-free to fall into local optimization. Based the 

examination of defects in the fundamental GSO algorithm, this algorithm was improved and the Levy flights [23-26] was 

used in it, so double glow-worms swarm co-evolution optimization algorithm based Levy flights was presented to solve 
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optimal reactive power problem. The proposed algorithm DGLF has been evaluated in standard IEEE 30 and IEEE 57, 

bus test systems. The simulation results show that our proposed approach outperforms all the entitled reported algorithms 

in minimization of real power loss. 

 

II.     PROBLEM FORMULATION 

The optimal power flow problem is treated as a general minimization problem with constraints, and can be 

mathematically written in the following form: 

Minimize f(x, u)                                                   (1)  

subject to g(x,u)=0                                               (2)  

and 

                                                                   (3) 

Where f(x,u) is the objective function. g(x.u) and h(x,u) are respectively the set of equality and inequality constraints. x is 

the vector of state variables, and u is the vector of control variables. 

The state variables are the load buses (PQ buses) voltages, angles, the generator reactive powers and the slack active 

generator power: 

  (                                   )
 
   (4) 

The control variables are the generator bus voltages, the shunt capacitors/reactors and the transformers tap-settings: 

  (       )
 
                                                    (5) 

or 

  (                                )
 

        (6) 

Where ng, nt and nc are the number of generators, number of tap transformers and the number of shunt compensators 

respectively. 

III.     OBJECTIVE FUNCTION 

1.1 Active power loss 

The objective of the reactive power dispatch is to minimize the active power loss in the transmission network, which can 

be described as follows: 

     ∑        (  
    

             )          (7)                          

or 

     ∑                ∑       
  
                         (8) 

where gk : is the conductance of branch between nodes i and j, Nbr: is the total number of transmission lines in power 

systems. Pd: is the total active power demand, Pgi: is the generator active power of unit i, and Pgsalck: is the generator active 

power of slack bus. 

1.2 Voltage profile improvement 

For minimizing the voltage deviation in PQ buses, the objective function becomes: 

                                            (9) 

Where ωv: is a weighting factor of voltage deviation. 
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VD is the voltage deviation given by: 

   ∑ |    |
   
                                    (10) 

1.3 Equality Constraint  

The equality constraint g(x,u) of the ORPD problem is represented by the power balance equation, where the total power 

generation must cover the total power demand and the power losses: 

                                               (11) 

This equation is solved by running Newton Raphson load flow method, by calculating the active power of slack bus to 

determine active power loss. 

1.4 Inequality Constraints  

The inequality constraints h(x,u) reflect the limits on components in the power system as well as the limits created to 

ensure system security. Upper and lower bounds on the active power of slack bus, and reactive power of generators: 

 

       
                   

                    (12) 

 

   
           

                        (13) 

 

Upper and lower bounds on the bus voltage magnitudes:          

 

  
         

                           (14) 

 

Upper and lower bounds on the transformers tap ratios: 

 

  
         

                          (15) 

 

Upper and lower bounds on the compensators reactive powers: 

 

  
         

                        (16) 

 

Where N is the total number of buses, NT is the total number of Transformers; Nc is the total number of shunt reactive 

compensators. 

IV.     BASIC GLOWWORM SWARM OPTIMIZATION ALGORITHM 

In the fundamental GSO algorithm, a swarm of glow-worms are arbitrarily dispersed in the explore space of object 

functions. Accordingly, these glow-worms bear a luminescent quantity called Lucifer in along with them and they have 

their own decision domain    
  (    

    ).The glow-worms produce light which intensity is proportional to the 

linked Lucifer in and interrelate with other glow-worms within a variable neighbourhood. The glow-worms‟ Lucifer in 

intensity is correlated to the fitness of their existing locations. The superior the intensity of Lucifer in, the better the 

location of glowworm, in other words, the glowworm symbolizes a good target value. Otherwise, the target value is poor. 

A glow-worm i consider another glow-worms j as its neighbour if j is within the neighbourhood range of i and the Lucifer 

in level of j is higher than that of i. In particular, the neighbourhood is defined as a local-decision domain that has a 

changeable neighbourhood range    
  bounded by a radial sensor range   (    

    ). Every glowworm selects, using a 

probabilistic mechanism, a neighbour that has a Lucifer in value higher than its own and moves toward it. That is, glow-

worms are fascinated by neighbours that glow brighter. In addition, the dimension of the neighbourhood range of each 

glowworm is influenced by the amount of glow-worms in the neighbourhood range. The neighbourhood range of the 

glowworm is relative to the density of its neighbours. If the neighbourhood range covers low density of glow-worms, the 
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neighbourhood range will be increased. On the converse, the neighbourhood range will be reduced. In petite, GSO 

algorithm includes four stages: the primary distribution of glow-worms, Lucifer in-update phase, Movement-phase, 

Neighbourhood range update. 

1.5 The primary distribution of glow-worms phase 

The primary distribution of glow-worms phase, in other words, it is begin phase. Reason is to make the glow-worms 

arbitrarily distribute in the explore space of object functions. Accordingly, these glow-worms carry the same intensity 

Lucifer in and they have the same decision domain r0. 

1.6 Lucifer in-update phase 

The glow-worms‟ Lucifer in intensity is associated to the fitness of their existing locations. The superior the intensity of 

Lucifer in, the enhanced the location of glowworm, in other words, the glowworm represents a high-quality target value. 

Or else, the target value is poor. In the algorithm of each iteration procedure, all the glow-worms‟ position will change, 

and then the Lucifer in value also follows updates. At time t, the location of the glow-worms i is xi(t), corresponding value 

of the objective function at glow-worms i‟s location at time t is J(xi(t)), put the J(x
i
(t)) into the li(t). li(t) Represents the 

Lucifer in level associated with glow-worms i at time t. The formula as follows:  

li(t) = (1− )li(t −1)+  J(xi(t))            (17)  

where   is the Lucifer in decay constant (0 <   < 1),   is the Lucifer in enhancement constant. 

1.7 Movement-phase 

At the movement phase, each glowworm chooses a neighbour and then shifts toward it with a certain probability. As the 

glow-worms i‟s neighbour need to meet two requirements: one, the glowworm within the decision domain of glow-worms 

i; two, the Lucifer in value is larger than the glow-worms i‟s. Glow-worms i moves toward a neighbour j which comes 

from Ni(t) with a certain probability, the probability is pi j(t). Using the formula (18) calculates it: 

 

       
           

∑                   

              (18) 

 

Glow-worms i after moving, then the location is updated, the location update formula is: 

 

                 (
           

‖           ‖
)      (19) 

 

where st is the step size.   

1.8 Neighbourhood range update phase 

With the glow-worm‟s position updating, it neighbourhood range also pursue update. If the neighbourhood range covers 

little density of glow-worms, the neighbourhood range will be increased. On the converse, the neighbourhood range will 

be reduced. The formula of neighbourhood range update as follows: 

 

  
          {      {    

          |     | }}                                                           (20) 

where   is a constant parameter and nt is a parameter used to control the number of neighbours. 

 

In the present model of GSO algorithm [27], each glowworm, according to the Lucifer in value, decides to shift toward a 

neighbour that has a Lucifer in value higher than its own. Finally, glow-worms are attracted to neighbours with glow 

brighter. Glow-worms search for the glowworm with the brightest light through moving toward it. In the present GSO 

algorithm, glow-worms search in a certain area. If there are a lot of glow-worms in the certain area, each glowworm have 
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more neighbours which can augment the number of glow-worms that the glow-worms must be researched. This can result 

in having more time to search for the optimal solution, that is, slow convergence. If there are petite glow-worms in the 

certain area, each glowworm has petite neighbours which lead to insufficient among glow-worms and not timely 

collaboration and easy to fall into local optimization. That is low precision. In nature, glow-worms produce a 

luminescence through releasing Lucifer in. There are different kinds of glow-worms. Because of this, different kinds of 

glow-worms emit different colours of light. The yellow and green colours are usually seen. The glow-worms with same 

colour shift toward each others. In the present model of GSO algorithm, this phenomenon is not considered. Based on 

this, the scheme that double glowworm swarm was used. In the Cuckoo Search algorithm, in order to augment the 

arbitrariness of Cuckoo searching the optimal solution, Cuckoo uses a specified flight way that with superior randomness-

Levy flights. This flight mode greatly enhanced the arbitrariness of Cuckoo searching the optimal solution. In this paper, 

Levy flights is applied in the double glowworm swarm, so the double glowworm swarm co-evolution optimization 

algorithm based Levy flights (DGLF) was presented to solve optimal reactive power dispatch problem  . 

V.     LEVY FLIGHTS 

Levy flight [28] is a rank of non-Gaussian random processes whose arbitrary walks are drawn from Levy stable 

distribution. This allocation is a simple power-law formula L(s) ~ |s|
-1-β

 where 0 < ß < 2 is an index. Mathematically 

exclamation, a easy version of Levy distribution can be defined as [29], [30]: 

         {
√

 

  
             

             

   [ 
 

      
]

 

       ⁄                            (21)                                            

where      parameter is scale (controls the scale of distribution) parameter, μ parameter is location or shift parameter. 

In general, Levy distribution should be defined in terms of Fourier transform 

                                                                                                                                  

        [  | | ]                  (22) 

where α is a parameter within [-1,1] interval and known as scale factor. An index of o stability β   [0, 2] is also referred to 

as Levy index. In particular, for β = 1, the integral can be carried out analytically and is known as the Cauchy probability 

distribution. One more special case when β= 2, the distribution correspond to Gaussian distribution. β and α parameters 

take a key part in determination of the distribution. The parameter β controls the silhouette of the probability distribution 

in such a way that one can acquire different shapes of probability distribution, especially in the tail region depending on 

the parameter β. Thus, the smaller β parameter causes the distribution to make longer jumps since there will be longer tail 

[31-33]. It makes longer jumps for smaller values whereas it makes shorter jumps for bigger values. By Levy flight, new-

fangled state of the particle is designed as 

 

                            (23) 

α is the step size which must be related to the scales of the problem of interest. In the proposed DGLF  method α is 

random number for all dimensions of particles. 

 

               (       )            (24) 

The product   means entry-wise multiplications. 

A non-trivial scheme of generating step size s samples are summarized as follows, 

 

               (       )              
 

| |  ⁄ (  
    )                (25) 

where u and v are drawn from normal distributions. That is 
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                           (26) 

with 

   {
               

 [       ]         }
 

 ⁄
          (27) 

Here   is standard Gamma function. One of the important points to be considered while performing distribution by Levy 

flights is the value taken by the β parameter and it substantially affects distribution. 

 

VI.     DOUBLE GLOWWORM SWARM CO-EVOLUTION OPTIMIZATION ALGORITHM BASED 

LEVY FLIGHTS 

When we use the GSO algorithm optimize the functions, according to the different colours of light, a certain amount of 

glowworm swarm is divided into two groups. The glow-worms with yellow luminescence make up a sub-population, the 

glow-worms with green luminescence make up another sub-population. The two groups of glowworm swarm 

concurrently search for the optimal solution in the explore time. One group searches the optimal solution according to the 

way of basic GSO; another group takes the way of Levy flights to get the optimal solution. When reaching a certain 

number of iterations, the glow-worms of two populations essentially converge to the around of optimal value, then the 

two populations of glow-worms are seen as two glow-worms. Each glowworm will be seen as the glowworm with the 

brightest light in the sub-population. Next, one glowworm moves toward another one that has a superior Lucifer in value. 

This combined way between two populations is cooperative for glow-worms out of local optimum and the speed of 

convergence will be enhanced greatly. According to this scheme the double glowworm swarm co-evolution optimization 

algorithm based Levy flights (DGLF) is designed to solve optimal reactive power dispatch problem. 

The steps of double glowworm swarm co-evolution optimization algorithm based Levy fights for optimal reactive power 

problem is described as follows: 

Step 1: Begin the population: set dimension is m, the number of glow-worms is 2n, step size is st, and so on. 

Step 2: According to the dissimilar colours of light, a certain amount of glowworm swarm is divided into two groups. The 

size of sub-population is n. 

Step 3: Insertion the two groups of 2n glow-worms arbitrarily in the search space of the object function. 

Step 4: Using the formula (17) put the J(xi(t)) into the li(t). li(t) represents the Lucifer in level associated with glow-

worms i at time t. J(xi(t)) represents the value of the objective function at glow-worms i‟s location at time t. 

Step 5: Every glowworm chooses a neighbour that has a Lucifer in value superior than its own to make up the Ni(t). 

Step 6: Each glowworm using the formula (18) picks a neighbour. 

Step 7: The glow-worms of one group move by Levy flights and then using the formula (23) renew the location of the 

glow-worms. 

Step 8: The glow-worms of another group move by fundamental GSO and using the formula (19) update the location of 

the glow-worms. 

Step 9: By means of the formula (20) renew the value of the variable neighbourhood range. 

Step 10: choose the glowworm with the brightest light of each sub-population at time t. 

Step 11: If attained the specified number of iterations and do not reached the maximum number of iterations, one sub-

population move toward another. Or else, execute the step (4). 

Step 12: If attained the maximum number of iterations, execute the step (10); or else, execute the step (4). 

Step 13: Output the results.  
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VII.     SIMULATION RESULTS 

At first DGLF algorithm has been tested in IEEE 30-bus, 41 branch system. It has a total of 13 control variables as 

follows: 6 generator-bus voltage magnitudes, 4 transformer-tap settings, and 2 bus shunt reactive compensators. Bus 1 is 

the slack bus, 2, 5, 8, 11 and 13 are taken as PV generator buses and the rest are PQ load buses. The considered security 

constraints are the voltage magnitudes of all buses, the reactive power limits of the shunt VAR compensators and the 

transformers tap settings limits. The variables limits are listed in Table 1. 

Table 1: Initial Variables Limits (PU) 

Control variables 

 

Min. 

value 

Max. 

value 

Type 

Generator: Vg 0.92 1.11 Continuous 

Load Bus: VL 0.94 1.00 Continuous 

T 0.94 1.00 Discrete 

Qc -0.11 0.31 Discrete 

 

The transformer taps and the reactive power source installation are discrete with the changes step of 0.01.  The power 

limits generators buses are represented in Table 2. Generators buses are: PV buses 2,5,8,11,13 and slack bus is 1.the 

others are PQ-buses. 

Table 2: Generators Power Limits in MW and MVAR 

Bus n° Pg Pgmin Pgmax Qgmin 

1 98.00 51 202 -21 

2 81.00 22 81 -21 

5 53.00 16 53 -16 

8 21.00 11 34 -16 

11 21.00 11 29 -11 

13 21.00 13 41 -16 

 

Table 3: Values of Control Variables after Optimization and Active Power Loss 

 

Control 

Variables (p.u) 

DGLF 

 

V1 1.0644 

V2 1.0550 

V5 1.0312 

V8 1.0441 

V11 1.0849 

V13 1.0651 

T4,12 0.01 

T6,9 0.00 

T6,10 0.91 

T28,27 0.90 

Q10 0.10 

Q24 0.10 

PLOSS 4.9185 

VD 0.9070 

Table 3 show the proposed approach succeeds in keeping the dependent variables within their limits.   
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Table 4 summarizes the results of the optimal solution obtained by PSO, SGA and DGLF methods. It reveals the 

reduction of real power loss after optimization. 

Table 4: Comparison Results of Different Methods 

SGA[34]  PSO[35]   DGLF 

4.98 Mw  4.9262Mw  4.9185 Mw  

Secondly the proposed hybrid DGLF algorithm for solving ORPD problem is tested in standard IEEE-57 bus power 

system.  The IEEE 57-bus system data consists of 80 branches, seven generator-buses and 17 branches under load tap 

setting transformer branches. The possible reactive power compensation buses are 18, 25 and 53. Bus 2, 3, 6, 8, 9 and 12 

are PV buses and bus 1 is selected as slack-bus. In this case, the search space has 27 dimensions, i.e., the seven generator 

voltages, 17 transformer taps, and three capacitor banks. The system variable limits are given in Table 5. The initial 

conditions for the IEEE-57 bus power system are given as follows: 

Pload = 12.421 p.u. Qload = 3.305 p.u. 

The total initial generations and power losses are obtained as follows: 

∑   = 12.7721 p.u. ∑   = 3.4552 p.u. 

Ploss = 0.27443 p.u. Qloss = -1.2241 p.u. 

Table 6 shows the various system control variables i.e. generator bus voltages, shunt capacitances and transformer tap 

settings obtained after DGLF based optimization which are within their acceptable limits. In Table 7, a comparison of 

optimum results obtained from proposed DGLF with other optimization techniques for ORPD mentioned in literature for 

IEEE-57 bus power system is given. These results indicate the robustness of proposed DGLF approach for providing 

better optimal solution in case of IEEE-57 bus system. 

Table 5: Variables limits for ieee-57 bus power system (p.u.) 

REACTIVE POWER GENERATION LIMITS  

BUS NO  1 2 3 6 8 9 12 

QGMIN -1.1 -.010 -.01 -0.01 -1.1 -0.02 -0.2 

QGMAX 1 0.1 0.1 0.23 1 0.01 1.50 

VOLTAGE AND TAP SETTING LIMITS 

VGMIN VGMAX VPQMIN VPQMAX TKMIN TKMAX 

0.5 1.0 0.91 1.01 0.5 1.0 
 

SHUNT CAPACITOR LIMITS 

BUS NO 18 25 53 

QCMIN 0 0 0 

QCMAX 10 5.1 6.0 
 

 

Table 6: control variables obtained after optimization by DGLF method for ieee-57 bus system (p.u.). 

 

Control 

Variables  

DGLF 

 

V1 1.2 

V2 1.060 

V3 1.051 

V6 1.040 

V8 1.061 

V9 1.033 
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V12 1.043 

Qc18 0.0840 

Qc25 0.331 

Qc53 0.0621 

T4-18 1.013 

T21-20 1.051 

T24-25 0.960 

T24-26 0.933 

T7-29 1.074 

T34-32 0.931 

T11-41 1.011 

T15-45 1.051 

T14-46 0.920 

T10-51 1.031 

T13-49 1.050 

T11-43 0.911 

T40-56 0.901 

T39-57 0.960 

T9-55 0.970 

 

Table 7: comparative optimization results for ieee-57 bus power system (p.u.) 

 

S.No. Optimization 

Algorithm 

Best Solution Worst Solution Average 

Solution 

1 NLP [36] 0.25902 0.30854 0.27858 

2 CGA [36] 0.25244 0.27507 0.26293 

3 AGA [36] 0.24564 0.26671 0.25127 

4 PSO-w [36] 0.24270 0.26152 0.24725 

5 PSO-cf [36] 0.24280 0.26032 0.24698 

6 CLPSO [36] 0.24515 0.24780 0.24673 

7 SPSO-07 [36] 0.24430 0.25457 0.24752 

8 L-DE [36] 0.27812 0.41909 0.33177 

9 L-SACP-DE [36] 0.27915 0.36978 0.31032 

10 L-SaDE [36] 0.24267 0.24391 0.24311 

11 SOA [36] 0.24265 0.24280 0.24270 
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12 LM [37] 0.2484 0.2922 0.2641 

13 MBEP1 [37] 0.2474 0.2848 0.2643 

14 MBEP2 [37] 0.2482 0.283 0.2592 

15 BES100 [37] 0.2438 0.263 0.2541 

16 BES200 [37] 0.3417 0.2486 0.2443 

17 Proposed DGLF 0.22341 0.23460 0.23117 

VIII.     CONCLUSION 

DGLF algorithm has been effectively applied for ORPD problem. DGLF based ORPD is tested in standard IEEE 30, 

IEEE 57 bus system. Performance comparisons with well-known population-based algorithms give encouraging results.  

DGLF emerges to find good solutions when compared to that of other algorithms. The simulation results presented in 

previous section prove the ability of DGLF approach to arrive at near global optimal solution. 
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