Thermo-Mechanical Properties and Microstructural Characterization of Welded Steel Plates

Okolie Paul Chukwuluziea, Chidume Nnamdi Nwambub, Obiora Nnaemeka Ezenwaa, Okolie Uchenna Onyebuchic, Chikelue Edward Ochiaghad

aDepartment of Mechanical Engineering, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
bDepartment of Metallurgical and Materials Engineering, Nnamdi Azikiwe University, Awka, Anambra State Nigeria
cElectronics Development Institute (ELDI) Awka Capital Territory Anambra State, Nigeria.
dSeries Premium Nigeria Limited Awka, Anambra State, Nigeria.

\textbf{DOI:} https://doi.org/10.5281/zenodo.10118218

\textbf{Published Date:} 13-November-2023

\textit{Abstract:} The study focused on thermo-mechanical properties of steel weld. A mild steel stock selected from the SAE10XX class was used to fabricate four pairs of rectangular plates, each measuring 200 mm × 100 mm × 6 mm. Mechanical tests were conducted on the welded samples and their microstructures analysed using scanning electron microscope. The results suggest that a good combination of the operational variables guarantees stable welding operation which in turn assists in achieving a quality welded joint. Hence, from the results it is recommended that maintaining low but sufficient high welding power helps to minimize excessive temperature rise in the base metal and improves stress distribution along the welding line, which in turn mitigates degradation of mechanical properties. The result also showed that a coarse structure is formed in the fusion zone while fine structure is formed in the heat affected region.

\textbf{Keywords:} Steel, Weld joint, Mechanical properties, Heat transfer, Welding parameters, Thermal analysis, Temperature distribution.

1. \textbf{INTRODUCTION}

In metal joining, welding creates a permanent joint between two or more base metals. American Welding Society (AWS), defined the phenomenon as the coalescence of metals or non-metallics produced by heating the materials to a specific temperature without applying pressure, or by applying pressure alone, with or without using filler metal. Thermally, the base metals and the filler material are melted while in contact with one another, then cooled and bonded together. Research in welding processes is primarily driven by the need to overcome defects in welds as well as other limitations associated with welding as an important metal joining process. In many cases, welding conditions and subsequent cooling of metals cause the material to degrade the mechanical properties at the weld region because of residual stresses and other factors associated with changes in material microstructure (Holovento et al. 2013; Hu et al. 2013). Weld induced residual stresses can greatly affect the mechanical behavior and response of structures, for instance they may enhance occurrence of brittle fracture, fatigue, structural buckling and stress corrosion cracking (Azimi et al. 2018; Dias & Chuvas, 2016; Grajcar et al. 2014). The problem of material microstructural change is inevitable in welding since the process necessarily involves heating the weld materials beyond equilibrium melting temperature. For instance, in the arc welding process, the energy
required for metal fusion is produced by the Joule effect which produces the energy required to melt the base and filler metals, forming what is known as the liquid pool whose temperature varies from 1700 K to 2500 K, depending on the material. In the liquid pool, convective effects take place that improve the heat transport. When the heat sources are removed, the metal solidifies on cooling (Khan et al. 2008; Bringes, 2012). During the cooling process, temperature changes in the alloy produce solid state transformations. These microstructural transformations cause changes in the material properties during the evolution of the process. The thermal strains that occur in the vicinity of the welding zone are elasto-plastic and the resulting stresses react, causing permanent distortions which also affect the dimensional integrity of the joint. At present, evaluation of weld joint requires mechanical testing and detailed metallographic examination of the microstructural differences at the weld region (Grajcar et al. 2014; Holovenko et al., 2013; Hu et al. 2013; Khan et al. 2008). Therefore, the proposed study on thermo-mechanical analysis of steel weld and microstructure represents an important research problem.

Critical monitoring of welding process is central to achieving high strength permanent weld joint in metals. Previous studies assisted in rapid development of welding processes, proper welding skills, appropriate welding technologies for the various types of metals/alloys, and some practical solutions to weld defects which helped to minimize the most fundamental problems (Calik, 2009; DeCost et al. 2019). The present study noted that the most reliable suggestions to a specific weld problem are those based on detailed consideration of the thermo-mechanical properties of the weld materials such as; heat capacity, thermal conductivity, rheological properties, thermal expansion, strength, fracture, melting/freezing point, latent heat, thermal durability, hardness, resistance for abrasion and surface energy (Kou, 2003; Li et al. 2019; Merchant, 2015). Heat capacity and thermal conductivity are the main properties characterizing heat transfer in materials. Heat capacity is a measure of the ability of a material to absorb heat energy under heating and to emit heat energy under cooling while; thermal conductivity is heat flux through material layer with unit thickness when the temperature of the material opposite sides of the layer differs by 1 K (Ohkita & Oikawa 2007; Papa et al 2011). Rheological properties describe relations between internal stresses of materials and their deformations or strains. The most popular ones include; elasticity, viscosity and plasticity. Weld problem is somewhat complicated when the base metals (or alloy) show regional diversity in the chemical compositions (as in dissimilar metals/alloys, or different alloys of the same metals) due to differences in these thermo-mechanical properties (Azimi et al. 2018 Elangovan et al. 2013).

Comprehensive review of the literature conducted in this study reveals that quite impressive research attentions have been directed to solving problems related to steel welds. Moreover, there is sufficient literary evidence to say that the existing technical procedures for assessing welded joints which include mechanical testing and metallographic examination of the microstructure are currently mature. Interestingly, analytical, instrumental analytical and numerical techniques have been introduced in literature to enhance theoretical studies. Also, various independent/validation experimental studies have been reported. However, some of the recommendations to steel weld problems coming from previous research efforts attract a considerably high cost of implementation and are sometimes ignored to reduce cost of welding. This true situation creates avenue for sustained research on alternative solutions to weld defects that may guarantee reduced manufacturing cost. The present research seeks for a greater understanding of the problem through the proposed integrated study on thermo-mechanical analysis of steel weld and metallographic analysis of the material microstructure. Such an elaborate work on the selected key area is expected to provide a comprehensive knowledge on the sources of weld defects, factors that control quality of steel welded joints and alternative solutions to steel welding economy.

2. EXPERIMENTAL PROCEDURES

A mild steel stock selected from the SAE10XX class was used to fabricate four pairs of rectangular plates, each measuring 200 mm × 100 mm × 6 mm. Prior to welding at Mechanical Engineering Workshop of Nnamdi Azikiwe University, the samples were analyzed for their chemical composition and relevant mechanical properties. The chemical composition of the specimen was analyzed using OES after a thorough polishing. For the thermal process, one pair of steel samples was utilized to analyze each of the four demarcated heat transfer zones (BM, WL, BL and HAZ). An arc welding machine (Fronius Model- NW2200) was used for the welding operation and the welding was carried out along the 200 mm edge in a butt joint squared groove. The surface of the plates was cleaned with a cotton ball dipped in acetone before welding to remove any stains and dirt on the surface. At every step, each pair was arranged on a workbench with a 1 mm gap between the segments. Only one part of the pair was clamped to monitor natural distortion and material distortion in the second segment which was free throughout the welding period. The machine is equipped with voltage (23 V)/current (90A)
regulators and a multi-meter display that allowed the welding power to be prescribed appropriately. Three sets of high configuration digital optical thermometers were focused at the three marked points in the fusion zone (FZ) at a distance of about 2 m from the back of the specimen. While three sets of thermocouple devices strongly clamped at the back of the specimen were used in the other zones of heat transfer for convenience. To start the welding the electrode was placed at the origin (0,0,0) for a few seconds to ensure complete joint penetration and then moved forward along the welding direction using the specified welding speed of 1 mm/s. The process was monitored over the entire welding duration of about 180 s. During the welding, the instantaneous temperature readings recorded by the infrared (IR) thermometer or thermocouple devices were captured using a high-speed video camera (Panasonic Full Hd Camcorder-50x) focused on the digital display screens. After welding, the samples were allowed to cool under the prevailing environmental condition. Visual inspection was used to monitor macro defects and material distortion after deslagging. After allowing the specimen to cool down to room temperature the maximum distortion of the free steel segment was measured using a vernier calliper. Tensile testing of the samples (before and after welding) was conducted following the ASTM E8 standard with a gauge length of 25 mm. The hardness values of the samples before and after welding was determined using a Brinell Hardness Tester on the BM and WL using ASTM E10-14 standard testing procedure carried out in the Metallurgy Institute Onitsha and the scanning electron microscope (SEM) was conducted at Yaradua University, Katsina.

3. RESULTS AND DISCUSSION

Mechanical and chemical characterization of the steel plate

The mechanical test results obtained are presented in Table 1. To quantify the effects of welding on tensile strength and hardness, Table 1 presents the properties of the alloys studied. These properties are affected by welding by increasing the hardness and decreasing yield strength (YS), ultimate tensile strength (UTS) and breaking strength (BS). The hardness of the material increased after welding, which means that other mechanical properties were degraded.

Table 1: Mechanical test results of the steel sample

<table>
<thead>
<tr>
<th>Description</th>
<th>Elastic load (N)</th>
<th>Yield load (N)</th>
<th>Maximum load (N)</th>
<th>Breaking load (N)</th>
<th>Hardness (HB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load</td>
<td>6500</td>
<td>7554</td>
<td>9767</td>
<td>9067.4</td>
<td></td>
</tr>
<tr>
<td>Extension (mm)</td>
<td>1.30</td>
<td>2.40</td>
<td>5.30</td>
<td>6.50</td>
<td></td>
</tr>
<tr>
<td>Initial length (mm)</td>
<td>30.45</td>
<td>30.45</td>
<td>30.45</td>
<td>30.45</td>
<td></td>
</tr>
<tr>
<td>Final length (mm)</td>
<td>32.32</td>
<td>32.87</td>
<td>36.34</td>
<td>38.42</td>
<td></td>
</tr>
<tr>
<td>Elongation (%)</td>
<td>25.42</td>
<td>275</td>
<td>360</td>
<td>330</td>
<td>106</td>
</tr>
<tr>
<td>YS (N/mm²)</td>
<td>2.40</td>
<td>30.45</td>
<td>30.45</td>
<td>30.45</td>
<td></td>
</tr>
<tr>
<td>UTS (N/mm²)</td>
<td>32.87</td>
<td>36.34</td>
<td>38.42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BS (N/mm²)</td>
<td>32.32</td>
<td>30.45</td>
<td>30.45</td>
<td>30.45</td>
<td></td>
</tr>
<tr>
<td>Before welding</td>
<td>20.4</td>
<td>243</td>
<td>314</td>
<td>-</td>
<td>140</td>
</tr>
<tr>
<td>After welding</td>
<td>20.4</td>
<td>243</td>
<td>314</td>
<td>-</td>
<td>140</td>
</tr>
</tbody>
</table>

In addition, the chemical composition of the specimen was also analyzed using OES after a thorough polishing. Table 2 summarizes the chemical composition test results for the steel sample. These results led to an AISI–SAE classification of the steel sample as SAE1017. The material is considered mild steel because it has a low carbon content and is generally used in structural applications. There is no doubt that mild steel is one of the most popular types of steel for structural applications due to its important properties.

Table 2: Average chemical composition (%) result for the steel sample.

<table>
<thead>
<tr>
<th>Element Percentage</th>
<th>Carbon</th>
<th>Manganese</th>
<th>Silicon</th>
<th>Sulphur</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage</td>
<td>0.18</td>
<td>0.67</td>
<td>0.4</td>
<td>0.06</td>
<td>0.04</td>
</tr>
</tbody>
</table>
3.2 Microstructural Analysis

Figure 1: Microstructure of weld zone (a) 500x, (b) 1000x, (c) 2000x and (d) 3000x

The microstructure investigation of the welded mild steel plates has been performed using the scanning electron microscope (SEM). The microstructure of the weld zone shown in Figure 1 revealed that increase in heat input resulted in the formation of more grains as shown in the different magnifications of the microstructure. From the figure, it can be clearly seen that the coarser grain structure is formed in fusion zone. The temperature in the fusion zone is having more than the melting temperature of the metal so a new coarse grain is formed after welding. As a result of high temperature recrystallization, fine grains are formed in the HAZ, which is characterized with high hardness and toughness values. Consequently, there is drop-in cooling rate that produces coarse grain. The lower hardness, low strength and increase in porosity of the weld bead were caused by the coarse grains as seen in the microstructure.

4. CONCLUSION

The results of this research led to the following conclusions as summarised below:

Mild steel workpieces will be permanently distorted when joined using the arc welding method. Arc welding distortion is a function of the power of the heat source, the welding speed, clamping conditions, and the cooling rate of the welded workpiece after welding. Degradation of important mechanical properties such as; yield strength, ultimate tensile strength and breaking strength associated with steel weld is predominant in the weld area including the weld line (WL), the fusion zone (FZ) and the heat-affected zone (HAZ).

REFERENCES

